3.429 \(\int \frac{\cot ^4(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=96 \[ \frac{2 \cot ^3(c+d x)}{3 a^2 d}+\frac{2 \cot (c+d x)}{a^2 d}-\frac{7 \tanh ^{-1}(\cos (c+d x))}{8 a^2 d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{7 \cot (c+d x) \csc (c+d x)}{8 a^2 d} \]

[Out]

(-7*ArcTanh[Cos[c + d*x]])/(8*a^2*d) + (2*Cot[c + d*x])/(a^2*d) + (2*Cot[c + d*x]^3)/(3*a^2*d) - (7*Cot[c + d*
x]*Csc[c + d*x])/(8*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.187241, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {2869, 2757, 3768, 3770, 3767} \[ \frac{2 \cot ^3(c+d x)}{3 a^2 d}+\frac{2 \cot (c+d x)}{a^2 d}-\frac{7 \tanh ^{-1}(\cos (c+d x))}{8 a^2 d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{7 \cot (c+d x) \csc (c+d x)}{8 a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^4*Csc[c + d*x])/(a + a*Sin[c + d*x])^2,x]

[Out]

(-7*ArcTanh[Cos[c + d*x]])/(8*a^2*d) + (2*Cot[c + d*x])/(a^2*d) + (2*Cot[c + d*x]^3)/(3*a^2*d) - (7*Cot[c + d*
x]*Csc[c + d*x])/(8*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a^2*d)

Rule 2869

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[a^(2*m), Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f,
 n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^4(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^2} \, dx &=\frac{\int \csc ^5(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4}\\ &=\frac{\int \left (a^2 \csc ^3(c+d x)-2 a^2 \csc ^4(c+d x)+a^2 \csc ^5(c+d x)\right ) \, dx}{a^4}\\ &=\frac{\int \csc ^3(c+d x) \, dx}{a^2}+\frac{\int \csc ^5(c+d x) \, dx}{a^2}-\frac{2 \int \csc ^4(c+d x) \, dx}{a^2}\\ &=-\frac{\cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}+\frac{\int \csc (c+d x) \, dx}{2 a^2}+\frac{3 \int \csc ^3(c+d x) \, dx}{4 a^2}+\frac{2 \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,\cot (c+d x)\right )}{a^2 d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{2 a^2 d}+\frac{2 \cot (c+d x)}{a^2 d}+\frac{2 \cot ^3(c+d x)}{3 a^2 d}-\frac{7 \cot (c+d x) \csc (c+d x)}{8 a^2 d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}+\frac{3 \int \csc (c+d x) \, dx}{8 a^2}\\ &=-\frac{7 \tanh ^{-1}(\cos (c+d x))}{8 a^2 d}+\frac{2 \cot (c+d x)}{a^2 d}+\frac{2 \cot ^3(c+d x)}{3 a^2 d}-\frac{7 \cot (c+d x) \csc (c+d x)}{8 a^2 d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}\\ \end{align*}

Mathematica [A]  time = 1.46709, size = 116, normalized size = 1.21 \[ -\frac{\left (\csc \left (\frac{1}{2} (c+d x)\right )+\sec \left (\frac{1}{2} (c+d x)\right )\right )^4 \left (-48 \sin (2 (c+d x))+45 \cos (c+d x)+(32 \sin (c+d x)-21) \cos (3 (c+d x))+84 \sin ^4(c+d x) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{1536 a^2 d (\sin (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^4*Csc[c + d*x])/(a + a*Sin[c + d*x])^2,x]

[Out]

-((Csc[(c + d*x)/2] + Sec[(c + d*x)/2])^4*(45*Cos[c + d*x] + 84*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]
)*Sin[c + d*x]^4 + Cos[3*(c + d*x)]*(-21 + 32*Sin[c + d*x]) - 48*Sin[2*(c + d*x)]))/(1536*a^2*d*(1 + Sin[c + d
*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.171, size = 170, normalized size = 1.8 \begin{align*}{\frac{1}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}-{\frac{1}{12\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+{\frac{1}{4\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{3}{4\,d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{3}{4\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}+{\frac{7}{8\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }+{\frac{1}{12\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}-{\frac{1}{4\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^5/(a+a*sin(d*x+c))^2,x)

[Out]

1/64/d/a^2*tan(1/2*d*x+1/2*c)^4-1/12/d/a^2*tan(1/2*d*x+1/2*c)^3+1/4/d/a^2*tan(1/2*d*x+1/2*c)^2-3/4/d/a^2*tan(1
/2*d*x+1/2*c)+3/4/d/a^2/tan(1/2*d*x+1/2*c)-1/64/d/a^2/tan(1/2*d*x+1/2*c)^4+7/8/d/a^2*ln(tan(1/2*d*x+1/2*c))+1/
12/d/a^2/tan(1/2*d*x+1/2*c)^3-1/4/d/a^2/tan(1/2*d*x+1/2*c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.11237, size = 263, normalized size = 2.74 \begin{align*} -\frac{\frac{\frac{144 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{48 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{16 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac{3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}}{a^{2}} - \frac{168 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac{{\left (\frac{16 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{48 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{144 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 3\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}{a^{2} \sin \left (d x + c\right )^{4}}}{192 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/192*((144*sin(d*x + c)/(cos(d*x + c) + 1) - 48*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 16*sin(d*x + c)^3/(cos
(d*x + c) + 1)^3 - 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)/a^2 - 168*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 -
 (16*sin(d*x + c)/(cos(d*x + c) + 1) - 48*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 144*sin(d*x + c)^3/(cos(d*x +
c) + 1)^3 - 3)*(cos(d*x + c) + 1)^4/(a^2*sin(d*x + c)^4))/d

________________________________________________________________________________________

Fricas [A]  time = 1.12775, size = 406, normalized size = 4.23 \begin{align*} \frac{42 \, \cos \left (d x + c\right )^{3} - 21 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 21 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) - 32 \,{\left (2 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 54 \, \cos \left (d x + c\right )}{48 \,{\left (a^{2} d \cos \left (d x + c\right )^{4} - 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/48*(42*cos(d*x + c)^3 - 21*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(1/2*cos(d*x + c) + 1/2) + 21*(cos(d*x
 + c)^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c) + 1/2) - 32*(2*cos(d*x + c)^3 - 3*cos(d*x + c))*sin(d*x
+ c) - 54*cos(d*x + c))/(a^2*d*cos(d*x + c)^4 - 2*a^2*d*cos(d*x + c)^2 + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**5/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.35478, size = 212, normalized size = 2.21 \begin{align*} \frac{\frac{168 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac{350 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 144 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 48 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 16 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3}{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4}} + \frac{3 \, a^{6} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 16 \, a^{6} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 48 \, a^{6} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 144 \, a^{6} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{8}}}{192 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/192*(168*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - (350*tan(1/2*d*x + 1/2*c)^4 - 144*tan(1/2*d*x + 1/2*c)^3 + 48*
tan(1/2*d*x + 1/2*c)^2 - 16*tan(1/2*d*x + 1/2*c) + 3)/(a^2*tan(1/2*d*x + 1/2*c)^4) + (3*a^6*tan(1/2*d*x + 1/2*
c)^4 - 16*a^6*tan(1/2*d*x + 1/2*c)^3 + 48*a^6*tan(1/2*d*x + 1/2*c)^2 - 144*a^6*tan(1/2*d*x + 1/2*c))/a^8)/d